DEBRIEFING ON XXIIIV ISSCT CONGRESS EXPERIENCE AND OPPERTUNITIES

by

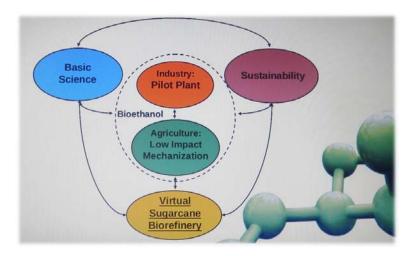
Dr. Shahid Afghan Director Research Shakarganj Sugar Research Institute, Jhang Pakistan shahid.afghan@shakarganj.com.pk

ABSTRACT

International Society of Sugarcane Technologists (ISSCT) 28th Congress was organized on 24 to 28 June 2013 at Sao Paulo Brazil with pre and post congress visits to cane fields and sugar factories. Two research papers were presented on the event from Pakistan. Total presentations were 327 from 42 countries of sugar world, covering research work on agriculture, biology, factory and co-products. In Brazil, climatic and soil conditions are ideal for sugarcane crop with rainfall 2,000 mm per annum, temperature range 05 to 35 Celsius. About 70,000 growers were growing sugarcane crop on 23.66 million acres, supplying 588 million tons of cane to 435 sugar factories. Average cane yield was 760 mounds per acre with average recoverable sugar 12 percent. Brazilian sugar industry started commercial production of 6 Bios for its sustainability viz. bio-ethanol, bioelectricity, bio-sugar, bio-diesel, bio-foam and bio-water. Crushing-season duration was expanded from 6 to 9 months. Some factories efforts were in progress to extend the duration with sweet sorghum for 11 months. 92 % harvesting and plantings were mechanized with 6 hours average cut to crush intervals. Cropped areal survey was done with GPS based tagging for varietal survey, identification, yield estimates and prediction of biotic and abiotic factors. Amongst the top 10 varieties area under one variety was not more than 27 percent even if it was excellent in all aspect, this was done to avoid any unexpected epidemic. Linear regression models were used to breed the crop as sugarcane and energycane. Plant improvement was in progress using molecular, basic and commercial breeding. A new technique "microscopy" as most efficient and reliable tool was used for screening of varieties against Smut and Rust diseases. Opportunities for the institutes working on improvement of sugarcane crop in Pakistan comprised biological material transfer agreements, development of crop photo-system efficiency, microscopic screening for diseases, use of linear regression model for biometry of the crop, GPS based crop logging, development of DNA marker for cluster analysis of varieties to group for sucrose contents, training of scientist and collection of 20 clones form ISSCT germplasm bank, annually. Sound policies, environmental care, social responsibility, technological development, trade barriers elimination and partnership are key for the successful development of Brazilian Sugar Industry.

Events and Papers

Pre-Congress:	June 20-21, 2013
Congress:	June 24-27, 2013
Countries:	65
Delegates/Members:	850/1486
Papers Submitted:	600
Accepted:	
Full Length papers:	184
Poster papers:	137
Plenary papers & Reports:	12
Post-Congress:	June 29-30, 2013


ISSCT Congress – 2013

Section	Papers	Posters
Agriculture	47	28
Biology	63	60
Factory	36	26
Co-products	29	18
Management	9	5
TOTAL	184	137

Statistics of Brazilian Sugar Industry

Number of Sugar Mills	= 435
Number of Cane Growers	= 70,000
Average number of growers per mill	= 161
Cultivated area (million hectares)	= 9.62
Cane Yield (tons per hectare)	=72.0
Sugar Recovery (% cane)	= 12.0

Research Programme

Selection Pressure in Cane Seedling at Different Cane Breeding Stations

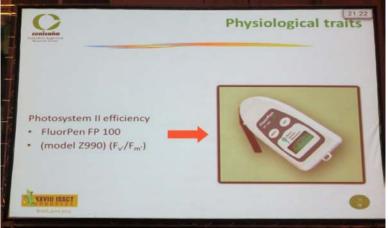
Country	Cane area	Crosses	Seedlings per
	('000'ha .)	(number)	annum
Australia	391	1,500	85,000
Brazil	9,616	1,477	400,000
India	4,400	2,500	300,000
Indonesia	495	2,000	1,200,000
Mauritius	61	2,600	100,000
South Africa	314	1,300	180,000
USA	350	1,700	300,000
Sri Lanka	14	1,000	100,000
Pakistan	1,031	-	50,000

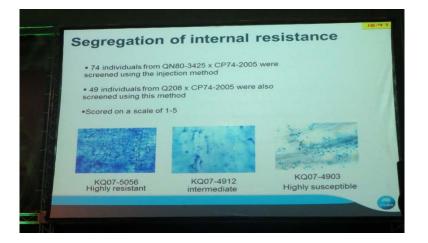
The 20 Most Grown Varieties Brazil

Varieties	%	Position
RB867515	27.27	1
SP81-3250	10.60	2
RB966928	9.49	3
RB855453	6.11	4
RB855156	5.12	5
RB92579	5.10	6
CTC-15	3.02	7
SP83-2847	2.89	8
CTC-9	2.33	9
RB83-5054	2.11	10
SP80-1842	2.03	11
RB85-5536	1.80	12

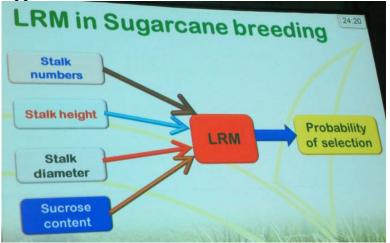
Varieties	%	Position
CTC-4	1.52	13
CTC-17	1.30	14
CTC-2	1.15	15
RB93-5744	1.07	16
SP80-3280	1.05	17
SP80-1116	0.98	18
RB83-5486	0.90	19
RB93-7570	0.85	20
Others	13.31	

The 20 Most Grown Varieties in Brazil


Planting Technique



Opportunities


- Breeding for stress tolerance 1
- ~ Linear Regression Model
- Exchange of germplasm ~
- ~
- Training of scientist DNA marker/genetic mapping ~
- Disease and molecular tools ~
- ~ Quarantine prediction
- ISSCT germplasm bank ~

Opportunities

Opportunities

The Future - availab	le to	day						
otimization Concept Maximum Biosugar Maximum Bioethanol Maximum Bielectricity Integrated Biodiesel	Zero Zero Zero Zero surpl	Concep residues liquid efj odors intake w us biowa imal emis	lluents ater; ter	BIOS	BIOF	DS	Mozze	BIODIES
Maximum mitigation	effect	on GHG	(1)		BIÒ	FOM	BIOW	ATER
GHG ⁵¹ EMISSIONS REDUCTION ^[2] ET	Kg CO _J /L H, EQUIV.	GHG MITIG. ¹⁴				DEDINI		DEDINI
TRADITIONAL MILL	2,02	89%		K				
DSM - STATE OF THE ART	2,56	112%		THIN CHI	a Greateria	-pub		
DSM - NEAR FUTURE (5)	3,02	132%		(2) Une (3) COL	Cycle analysis energipteray	eided using eth	anet	Contraction of the local division of the loc
DSM – POTENTIAL	>5,00	219%		-00 Mar	io. Witigailio	for the CO2 as of time in vehicles	dell'emission	s by using

Agricultural Functional Structure

Cultivation process Harvest process Development process

Cultivation Process

Soil analysis Chemical fertilizing (cover) Stillage dilution with Waste water Fertigation (vinasse) Soil adjustment (Calcarium and gypsum)

Development process

Contracts administration (partnership and farmers) Agricultural control and production planning New technologies (agriculture) Autopilot /Image diagnosis New systems of planting (varieties yard)

Varietal Trials

Areal Survey of Sugarcane Plantations

Cropped area surveyed Price of Package (Hardware + software) = 35,000 USD

Benefits:

- ✓ GPS based Tagging of total area
- ✓ Identification of crop and varieties
- ✓ Yield estimates,
- ✔ Prediction of diseases

DELTA SUCROENERGIA

Ribeirao Preto, Brazil (June 21, 2013)

- → Mechanized Planting / Harvesting
- \rightarrow Crop rotation and tillage
- → Biological Control of Sugarcane pests
- \rightarrow Reuse of organic waste (water, vinase, residue of production) on culture
- → Practice environmental education

= 500 ha pe

Application Of Vinase (dilution 6 to 2.5 brix) Using Rain Gun @ 8 Cubic Meter Per Hactare + 60 KG N Per Hectare With Out P and K

Mechanized Application Of Potassium And Gypsum Organic matter = 25 % Potassium= 2 % Other minerals = 3 % Moisture contents = 70 %

<u>One Crop Cycle:</u> Year-1 Application @ 14 t/ha <u>Year-2</u> Vinasse 2.5 brix @8 cubic meter /ha <u>Year-3</u> NK @ 100-200 /ha

Plantlets Plantation of Sugarcane as Seed of New Varieties



Application of Stillage on planted Sugarcane Nursery Seed

Dr. Jack C. Comstock, ARS-USDA, Canal Point, USA

Dr. Phillip Jackson and Dr. Mac Hogarth, CSIRO/BSES, Australia